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Projection Pursuit Regression 
JEROME H. FRIEDMAN and WERNER STUETZLE* 

A new method for nonparametric multiple regression is 
presented. The procedure models the regression surface 
as a sum of general smooth functions of linear combi- 
nations of the predictor variables in an iterative manner. 
It is more general than standard stepwise and stagewise 
regression procedures, does not require the definition of 
a metric in the predictor space, and lends itself to graph- 
ical interpretation. 

KEY WORDS: Nonparametric regression; Smoothing; 
Projection pursuit; Surface approximation. 

1. INTRODUCTION 

In the regression problem, one is given a p-dimensional 
random vector X, the components of which are called 
predictor variables, and a random variable Y, which is 
called the response. The aim of regression analysis is to 
estimate the conditional expectation of Y given X on the 
basis of a sample { ( x i ,  y i ) :  i = 1, 2, . . . , n). Typically, 
one assumes that the functional form of the regression 
surface is known, reducing the problem to that of esti- 
mating a set of parameters. To the extent that this model 
is correct, such parametric procedures can be successful; 
unfortunately, model correctness is difficult to verify in 
practice, and an incorrect model can yield misleading 
results. For this reason, there is a growing interest in 
nohparametric methods, which make only a few very 
general assumptions about the regression surface. 

The most extensively studied nonparametric regression 
techniques (kernel, nearest-neighbor, and spline smooth- 
ing) are based on p-dimensional local averaging: the es- 
timate of the regression surface at a point x, is the average 
of the responses of those observations with predictors in 
a neighborhood of xo. These techniques can be shown to 
have desirable asymptotic properties (Stone 1977). In 
high-dimensional settings, however, they do not perform 
well for reasonable sample sizes. The reason is the in- 
herent sparsity of high-dimensional samples. This is il- 
lustrated by the following simple example: let X be uni- 
formly distributed over the unit hypercube in RI0, and 
consider local averaging over hypercubical neighbor- 
hoods. If the dimensions of the neighborhood are chosen 
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to cover 10 percent of the range of each coordinate, then 
it will (on the average) contain only (. 1)" of the sample, 
and thus will nearly always be empty. If, on the other 
hand, one adjusts the neighborhood to contain 10 percent 
of the sample, it will cover (on the average) (. - 80 
percent of the range of each coordinate. This problem of 
sparsity basically limits the success of direct p-dimen- 
sional local averaging. In addition, these methods do not 
provide any comprehensible information about the nature 
of the regression surface. 

The successful nonparametric regression procedures 
that have been proposed are based on successive refine- 
ment. A hierarchy of models of increasing complexity is 
formulated. The complexity of a model is the number of 
degrees of freedom used to fit it. The aim is to find the 
particular model that, when estimated from the data, best 
approximates the regression surface. The search usually 
proceeds through the hierarchy in a stepwise manner. At 
each step, the model of the subsequent level of the hi- 
erarchy that best fits the data is selected. Since the sample 
size limits the complexity of the models that can be used, 
these procedures will be successful to the extent that the 
regression surface can be approximated by models on 
levels of low complexity in the hierarchy. 

Applying this concept with a hierarchy of polynomial 
functions of the predictors leads to the stepwise, stage- 
wise, and all-subsets polynomial regression procedures. 
These procedures have proven to be successful in many 
applications. Unfortunately, regression surfaces occur- 
ring in practice often are not represented well by low- 
order polynomials (e.g., surfaces with asymptotes); use 
of higher-order polynomials is limited by considerations 
of sample size and computational feasibility. 

A hierarchy of piecewise constant (Sonquist 1970) or 
piecewise linear (Breiman and Meisel 1976; Friedman 
1979) models leads to recursive partitioning regression. 
These procedures basically operate as follows: for a par- 
ticular predictor and a value of this predictor, the pre- 
dictor space is split into two regions, one projecting to 
the left and the other to the right of the value. A separate 
constant or linear model is fit to the sample points lying 
in each region. The particular predictor and splitting value 
are chosen to minimize the residual sum of squares over 
the sample. The procedure is then recursively applied to 
each of the regions so obtained. 

These recursive partitioning methods can be viewed as 
local averaging procedures, but unlike kernel and nearest- 
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neighbor procedures, the local regions are adaptively 
constructed based on the nature of the response variation. 
In many situations, this results in dramatically improved 
performance. However, as each split reduces the sample 
over which further fitting can take place, the number of 
regions, and thus the number of separate models, is 
limited. 

In this paper we apply the successive refinement con- 
cept in a new way that attempts to overcome the limi- 
tations of polynomial regression and recursive partition- 
ing. The procedure is presented in Section 2. Univariate 
smoothing is discussed in Section 3; implementation spe- 
cifics are considered in Section 4. In Section 5 we illus- 
trate the procedure by applying it to several data sets. 
The merits of this procedure, relative to other nonpara- 
metric procedures, are discussed in Section 6. In Section 
7 we relate projection pursuit regression to the projection 
pursuit technique for cluster analysis presented by Fried- 
man and Tukey (1974). 

2. THE ALGORITHM 

The regression surface is approximated by a sum of 
empirically determined univariate functions Sam of linear 
combinations of the predictors: 

M 

q(X) = C Sam(am XI, (1) 
m =  1 

where am. X denotes the inner product. The approxi- 
mation is constructed in an iterative manner. 

1. Initialize current residuals and term counter 

(We assume that the response is centered: C yi = 0.) 
2. Search for the next term in the model. For a given 

linear combination Z = a X, construct a smooth rep- 
resentation Sa(Z) of the current residuals as ordered in 
ascending value of Z (see Sec. 3). Take as a figure of 
merit (criterion of fit) I(a)for this linear combination the 
fraction of so  far unexplained variance that is explained 
by S,: 

n n
1 

Find the coefficient vector that maximizes ](a) 
(projection pursuit) aM+= maxa- lI(a), and the cor- 
responding smooth Sa,+ ,. 

3. Termination. If the figure of merit is smaller than 
a user-specified threshold, stop. (The last term is not 
included in the model.) Otherwise, update the current 
residuals and the term counter 

and go to Step 2. 
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This procedure directly follows the successive refine- 
ment concept outlined in the previous section: The 
models at the mth level of the hierarchy are sums of rn 
smooth functions of arbitrary linear combinations of the 
predictors. 

Standard additive models approximate the regression 
surface by a sum of functions of the individual predictors. 
Such models are not completely general in that they can- 
not deal with interactions of predictors. Considering func- 
tions of linear combinations of the predictors removes 
this limitation. For example, consider a simple interac- 
tion: Y = X1X2.A standard additive model cannot rep- 
resent this multiplicative dependence; however, Y can be 
expressed in the form (I), with a1 = (l/V'?)(l, I), a2 
= (l/V'?)(l, - l), S1(Z) = 4Z2, S2(Z) = -4Z2. The in- 
troduction of arbitrary linear combinations of predictors 
allows the representation of general regression surfaces. 

3. UNlVARlATE SMOOTHING 

The purpose of smoothing a set of observations 
(Yi, zi)7 = sequenced in ascending order of z, is to produce 
a decomposition yi = S(zi) + ri, where S is a smooth 
function and the ri are called residuals. The degree of 
smoothness of a function S can be formally defined (e.g., 
SS2(z) dz), but for the purpose of this discussion an in- 
tuitive notion of smoothness will be sufficient. Many pro- 
cedures for smoothing have been described (Tukey 1977; 
Cleveland 1979; Gasser and Rosenblatt 1979). They are 
based on the notion of local averaging: 

with suitable adjustment for the boundaries. Here AVE 
can denote the mean, median, or other ways of "aver- 
aging." The parameter k defines the bandwidth of the 
smoother. 

The assumption underlying traditional smoothing pro- 
cedures is that the observed responses yi are generated 
according to the model yi = f(xi) + ei, ei iid, E(ei) = 0, 
f smooth. The resulting smooth S is then taken as an 
estimate for f .  Choosing too small a bandwidth will tend 
to increase the variance component of the mean squared 
error of the estimate, whereas too large a bandwidth may 
increase the bias. The optimum bandwidth will, of course, 
depend on f and the variance of E, which are generally 
unknown. Formal methods for estimating the optimal 
bandwidth using cross-validation have been proposed 
(Wahba and Wold 1975). Often, however, the degree of 
smoothing is determined experimentally. One attempts 
to use as large a bandwidth as possible, subject to the 
smooth not lying systematically above or below the data 
in any region (oversmoothing). 

Our design of a smoother is guided by the fact that the 
model underlying traditional smoothing procedures is not 
appropriate. Our model seeks to explain response vari- 
ability by not just one smoothed sequence, but by a sum 
of smooths of several sequencings of the response (as in- 
duced by the several linear combinations of the predic-
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tors). High local variability encountered in a particular 
sequeace may be caused by smooth dependence of the 
response on other linear combinations. In order to pre- 
serve the ability of fitting this structure in further itera- 
tions, it is important to avoid accounting for it by spurious 
fits along existing directions. Consequently, we use a 
variable bandwidth smoother. An average smoother 
bandwidth is specified by the user. The actual bandwidth 
used for local averaging at a particular value of Z can be 
larger or smaller than the average bandwidth. Larger 
bandwidths are used in regions of high local variability 
of the response. 

To reduce bias, especially at the ends of the sequence, 
we smooth by locally linear, rather than locally constant, 
fitting (Cleveland 1979). Furthermore, each observation 
is omitted from the local average that determines its 
smoothed value. This cross-validation makes the average 
squared residual a more realistic indicator of variability 
about the smooth (e.g., it is not possible to make the 
average squared residual arbitrarily small by reducing the 
bandwidth). To protect against isolated outliers, we use 
running medians of three (Tukey 1977) as a first pass in 
our smoother. 

Our smoothing algorithm thus makes four passes over 
the data: 

1. Running medians of three; 
2. 	Estimating response variability at each point by the 

average squared of a locally linear fit with 
constant bandwidth; 

3. Smoothing these 	variance estimates by a fixed-
bandwidth moving average; and 

4' 	 the sequence obtained by pass by 
local '~ linear fits with bandwidths determined 
the smoothed local variance estimates'obtained in 
pass (3). 

4. IMPLEMENTATION 

For a particular linear combination, the smoother 
yields a residual sum of squares from the corresponding 
smooth. The optimal linear combination is sought by nu- 
merical optimization. Considerations governing the choice 
of the optimization algorithm are that (a) the function 
evaluations are expensive (each one requires several 
passes over the data); (b) the search usually starts far 
from the solution; and (c) the search can be restricted to 
the unit sphere in RP. For these reasons we chose a Ro- 
senbrock method (Rosenbrock 1960) modified to search 
on the unit sphere. The search is started at the best co- 
ordinate direction. On any given search there is no guar- 
antee that the global optimum will be found. If the local 
optimum is not acceptable, the search is restarted at ran- 
dom directions. This guards against premature termina- 
tion. If the local optimum is acceptable but not identical 
to the global optimum, no great harm is done because a 
new search is performed in the next iteration on an object 
function for which the previous optima have been deflated. 

Projection pursuit regression can be implemented with 

819 

or without readjustment of the smooths along previously 
determined linear combinations when a new linear com- 
bination has been found (backfitting). In the terminology 
of linear regression, this would correspond to the differ- 
ence between a stepwise and a stagewise procedure. We 
have implemented the stepwise version. 

In some situations it may be useful to restrict the search 
for solution directions to the set of predictors brojection 
selection) rather than allowing for linear combinations. 
Although the resulting additive model cannot represent 
completely general regression surfaces, it is still more 
general than linear regression in allowing for general 
smooth functions rather than only linear functions of the 
predictors. Projection selection is computationally less 
expensive than full projection pursuit and the resulting 
models are often more easily interpreted. One could also 
run projection selection, followed by projection pursuit, 
thereby separating the additive and interactive parts of 
the model. Another strategy would be to run projection 
pursuit and get some easily interpreted linear combina- 
tions (as in Sec. 5, second example, with XI  - X2, X4, 
XS) and then run projection selection on these directions 
to see how much is lost. Forming a parametric model 
based on these directions is another possibility. 

5. EXAMPLES 

In this section we present and discuss the results of 
applying projection pursuit regression (PPR) to three data 
sets. (A FORTRAN program implementing the PPR pro- 
cedure is available from the authors on request.) For all 
three examples the iteration was terminated when the 
figure of merit for the next term was less than .I.  The 
average bandwidth of the one-dimensional smoother was 
taken to be 30 percent for the first two examples and 10 
percent for the third. All predictors were standardized 
to have median zero and interquartile range one. (Widely 
different scales can cause problems for the numerical 
optimizer.) 

The first example is artificially constructed to be es- 
pecially simple in order to illustrate how PPR models 
interactions between predictors. A sample of 200 obser- 
vations was generated according to the simplest inter- 
action model Y = X1X2 + E with (XI, X2) uniformly 
distributed in (- 1, 1) x (- 1, 1) and E -N(O, .04). Figure 
l a  shows Y plotted against X2 with the corresponding 
smooth. Figure l b  shows Y plotted against the first linear 
combination Z1 = al . X, al = (.71, .70), found by 
projection pursuit, with the corresponding smooth 
S,,(al . X). Figure l c  shows the residuals r l  = Y -
Sa,(al  . X) plotted against the second linear combination 
Z2 = a2 . X, a2 = (.72, - .69), together with 
Sa,(a2 . X). Figure Id shows the residuals r2 = Y -
&,(a . X) - S,,(a2 . X) plotted against the third linear 
combination with the corresponding smooth. This pro- 
jection was not accepted because the figure of merit was 
below the threshold. (Note that the figure of merit, as 
defined in equation (2), measures the improvement in 
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Figure la. Y = Xl X2 + E,E - N(0, .04), vs. X2 (Y is Figure Ic. Residuals From First Solution Smooth 
plotted on the vertical axis, X2 on the horizontal axis. vs. Second Solution Linear Combination a2 ' - X ,a2 
The + symbols represent data points, numbers indi- = (,72, - .69) 
cate more than one data point. The smooth is repre- 
sented by * symbols) 

goodness of fit.) It is evident from inspection of Figure 
Id that this projection does not substantially contribute 
to the model. The pure quadratic shapes of S,, and 
S,,, together with the corresponding coefficient vectors 
al and a*,  reveal that PPR has essentially expressed the 
model Y = X1X2 in the additive form Y = b(X1 + X2)2 
- acx, - x212. 

Figure Ib. Y vs. First Solution Linear Combination 
a, . X, = (.71, -70) 

In the second example, PPR was applied to air pollution 
data. The data (213 observations) were taken from the 
contaminant and weather summary of the Bay Area Pol- 
lution Control District (Technical Services Division, 993 
Ellis Street, San Francisco, CA 94109). In this example 
we study the relation between the amount of suspended 
particulate matter (Y) and predictor variables mean wind 
speed (XI), average temperature (X2), insolation (X3), 
and wind direction at 4:00 A.M. (X4) and 4:00 P.M. ( X s )  

Figure Id. Residuals From First Two Solution 
Smooths vs. Third Solution Linear Combination a3 
X, a3 = (- .016, -99) 
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at the San Jose measuring station. Three projections were Figure 2b. Air Pollution-Second Solution Smooth 
accepted. Figures 2a through 2c show the three final S,,, a, = (. 16, -29, .17, .91, .16), With Residuals Added 
smooths (after backfitting) plotted against their corre-
sponding linear combinations. The points plotted are ob- 
tained by adding the residuals from the final model to 
each smooth. The first projection (Fig. 2a) shows that a 
good indicator of suspended particulate matter is (stand- 
ardized) temperature minus wind speed. For small values 
of this indicator, the amount of pollution is seen to be 
roughly constant; for higher values, there is a strong lin- 
ear dependence. The second smooth (Fig. 2b) and the 
corresponding direction (essentially X4)show a much 
smaller pollutant dependence on 4:00 A.M. wind direc- 
tion. The third projection (Fig. 2c) suggests an additional 
dependence on the 4:00 P.M. wind direction, but the ef- 
fect, if any, is clearly small. 

In order to illustrate PPR on highly structured data, 
which are common in the physical sciences, we apply it 
to data taken from a particle physics experiment (Ballam 
et al. 1971). This data set (500 observations) is described 
in Friedman and Tukey (1974). Here we study the com- 
bined energy of the three .ir mesons (Y)as a function of 
the six other variables. 

Figure 3a shows Y plotted against the first linear com- 
bination and the corresponding smooth found in the first 
iteration. Figures 3b through 3d show the final smooths high degree of structuring in the data expressed by the 

(after backfitting) for the first three of the nine accepted fact that the model explains over 99 percent of the 

projections. As in Figures 2a through 2c, we show the variance. 

residuals from the final model added to the final smooths. 6. DISCUSSION
Note the substantial change in the first smooth due to 
backfitting, which readjusts for later projections. Note Although simple in concept, projection pursuit regres- 
also the striking nonlinearity in Figures 3c and 3d and the sion overcomes many limitations of other nonparametric 

regression procedures. The sparsity limitation of kernel 
Figure 2a. Air Pollution (suspended particulate mat- 

ter)-First Solution Smooth s,,, a, = (.83,--55,.0, Figure 2c. Air Pollution-Third Solution Smooth 
.0, .lo), With Residuals Added S,,, a, = (.16, .21, .01, -.05, .96), With Residuals 

Added 
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Figure 3a. Combined Energy of Three.rr Mesons E3.rr 
(particle physics data) vs. First Solution Linear Com-
bination, a, = (.83, .54, .O, - .  16, .O, .0), With Corre-
sponding Smooth Found on the First Iteration 

Figure 3c. Particle Physics Data-Second Solution 
Smooth S,,, an= (.0, .82, - .05, .0, - .33, .46), With 
Residuals Added 

essary, more complex models. In addition, interactions 

and nearest-neighbor techniques is not encountered since predictors are 

all estimation (smoothing) is performed in a univariate One can view linear regression, projection selection, 
setting. PPR does not require specification of a metric in and full projection pursuit as a group of regression pro-
the predictor spake, unlike recursive PPR cedures ordered in ascending generality. Linear regres-
does not, split the sample, thereby allowing, when net- sion models the regression surface as a sum of linear 

functions of the predictors. Projection selection allows 

Figure 3b. Particle Physics Data-First Solution Figure 3d. Particle Physics Data-Third Solution 
Smooth Sal, a1 = (e83r .s41 .or - .  so), With Re- Smooth S,, = (,14, -39, .69, ,51, - -16, .26), With 
siduals Added Residuals Added 

I + * + 3 *  t 
I 

I I 
I + 2 + +  2 + + +  + + I 
I + +2 2+ C+H+ + + ++ 4+ +************+;! 3 + I 
I + 

+**47+2+ + +**+ 2+ tc+ + I 
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I?. + + H I  
I+ + + + I  
I+ + + +5 
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for nonlinearity by modeling with general smooth func- 
tions of the predictors. Full projection pursuit allows for 
interactions by modeling with general smooth functions 
of linear combinations of the predictors. 

PPR is computationally quite feasible. For increasing 
sample size n, dimensionality p ,  and number of iterations 
M, the computation required to construct the model 
grows as Mpn log (n). 

As seen in the examples, an important feature of PPR 
is that the results of each iteration can be represented 
graphically, facilitating interpretation. This pictorial out- 
put can be used to adjust the main parameters of the 
procedure, that is, average smoother bandwidth and ter- 
mination threshold. 

The average bandwidth should be chosen as large as 
possible, subject to the avoidance of oversmoothing. In 
any projection, whether the smooth systematically de- 
viates from the data is easily detected by visual inspec- 
tion. Whether a particular projection affects a significant 
improvement in the model can be judged subjectively by 
viewing its smooth and the corresponding residuals. Lack 
of a systematic tendency of the smooth indicates that 
including this projection into the model would only in- 
crease the variance, while not reducing the bias. One can 
also employ a more formal procedure based on cross-
validation (see Stone 1981). 

The PPR procedure can clearly be applied to the re- 
siduals from any initial model. If the initial model does 
not fit the data well, PPR will so indicate by augmenting 
the model. 

All stepwise procedures have difficulties modeling 
regression surfaces that cannot be well represented by 
models of low complexity in their hierarchy. Because 
models in PPR are sums of functions, each varying only 
along a single linear combination of the predictors, PPR 
has difficulties modeling regression surfaces that vary 
with equal strength along all possible linear combinations. 

7. PROJECTION PURSUIT PROCEDURES 

The idea of projection pursuit is not a new one. Inter- 
preting high-dimensional data through the use of well- 
chosen lower-dimensional projections is a standard pro- 
cedure in multivariate data analysis. The choice of a pro- 
jection is usually guided by an appropriate figure of merit. 
If the goal is to preserve interpoint distances as well as 
possible, then the appropriate figure of merit is the var- 
iance of the projected data, leading to projection on the 
largest principal component. If the purpose is to separate 
two Gaussian samples with equal covariance matrices, 
the figure of merit is the error rate of a one-dimensional 
classification rule in the projection, leading to linear dis- 
criminant analysis. In both cases the figure of merit is 
especially simple and the solution can be found by linear 
algebra. In a similar spirit, Friedman and Tukey (1974) 
suggest detecting clusters by searching for clustered pro- 

jections. Their figure of merit measuring the degree of 
clustering in a projection (P index) is too complex to be 
optimized by linear algebra. Instead, the optimal projec- 
tion was sought by numerical optimization; this was re- 
ferred to as projection pursuit. As multivariate structure 
often will not be completely reflected in one projection, 
it is important to remove structure already discovered 
(deflate previous optima of the figure of merit), allowing 
the algorithm to find additional interesting projections. 
Friedman and Tukey suggest splitting the data into clus- 
ters, once a clustered projection has been found, and 
applying the procedure to the data in each of the clusters 
separately. 

Projection pursuit regression follows a similar prescrip- 
tion. It constructs a model of the regression surface based 
on projections of the data on planes spanned by the re- 
sponse Y and a linear combination a . X of the predictors. 
Here the figure of merit for a projection is the fraction 
of variance explained by a smooth of Y versus a . X. 
Structure is removed by forming the residuals from the 
smooth and substituting them for the response. The 
model at each iteration is the sum of the smooths that 
were previously subtracted and thus incorporates the 
structure so far found. 
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